米哚妥林衍生物5'''-methoxyfradcarbazole A对小鼠白血病CB3细胞的作用及机制研究

饶青, 王立平, 朱伟明, 陈娟, 宋晶睿, 李艳梅

中国药学杂志 ›› 2020, Vol. 55 ›› Issue (13) : 1078-1085.

PDF(7449 KB)
PDF(7449 KB)
中国药学杂志 ›› 2020, Vol. 55 ›› Issue (13) : 1078-1085. DOI: 10.11669/cpj.2020.13.005
论著

米哚妥林衍生物5'''-methoxyfradcarbazole A对小鼠白血病CB3细胞的作用及机制研究

  • 饶青1, 王立平1, 朱伟明1,2, 陈娟1, 宋晶睿1, 李艳梅1*
作者信息 +

Effect and Mechanism of Midostaurin Derivatives 5'''-methoxyfradcarbazole A on Mouse Leukemia CB3 Cells

  • RAO Qing1, WANG Li-ping1, ZHU Wei-ming1,2, CHEN Juan1, SONG Jing-rui1, LI Yan-mei1*
Author information +
文章历史 +

摘要

目的 研究米哚妥林衍生物5'''-methoxyfradcarbazole A对小鼠白血病细胞CB3生长抑制的作用机制。方法 四甲基偶氮唑蓝(MTT)法检测化合物5'''-methoxyfradcarbazole A对小鼠白血病细胞CB3细胞增殖的影响,并测定其生长抑制曲线;利用流式细胞术测定细胞凋亡、周期和分化的结果;Western blot 分析5'''-methoxyfradcarbazole A对细胞周期、凋亡相关蛋白的影响。结果 化合物5'''-methoxyfradcarbazole A对小鼠白血病细胞具有显著的生长抑制作用,其IC50值为(0.587±0.135) μmol·L-1;5'''-methoxyfradcarbazole A能够诱导CB3细胞产生早期凋亡和晚期凋亡,并表现出时间和浓度的依赖性;其还能影响CB3的细胞周期,明显增高G2期比例;5'''-methoxyfradcarbazole A促进血小板分化标志物CD41和红细胞分化标志物Ter119表达的增加;此外,5'''-methoxyfradcarbazole A作用CB3细胞后显著增加凋亡相关蛋白Bim、PARP1和细胞周期蛋白P21的表达,降低磷酸化ERK蛋白的表达。结论 5'''-methoxyfradcarbazole A通过促进凋亡蛋白Bim的表达增加小鼠白血病细胞CB3的凋亡,通过增加细胞周期蛋白P21的表达使CB3细胞发生G2期阻滞;此外,PARP1及磷酸化的ERK蛋白表达水平变化也在一定程度上解释了5'''-methoxyfradcarbazole A对CB3细胞的生长抑制作用。

Abstract

OBJECTIVE To investigate the mechanism of midostaurin derivative 5'''-methoxyfradcarbazole A of action in inhibiting mouse leukemia cells (CB3) growth. METHODS MTT assay was employed to evaluate the effect of compound 5'''-methoxyfradcarbazole A on the proliferation of CB3 cells, and generate the growth inhibition curves. Flow cytometry and Annexin V-FITC /PI double staining were used to determine the changes of the cell cycle, cell differentiation and apoptosis. Western blot analysis was applied to test the effects of 5'''-methoxyfradcarbazole A on cyclin and apoptosis-related proteins. RESULTS The compound 5'''-methoxyfradcarbazole A could significantly inhibit the growth of CB3 cells, and the half maximal inhibitory concentration (IC50) of the compound was (0.587±0.135)μmol·L-1. 5'''-Methoxyfradcarbazole A was able to induce early apoptosis and late apoptosis of CB3 cells in a time- and dose-dependent manner. At the same time, it also affected the cell cycle of CB3 and significantly increased the proportion of G2 phase. The expression of CD41, a platelet differentiation marker, and Ter119, an erythrocyte differentiation marker, were also increased in CB3 cells treated with 5'''-methoxyfradcarbazole A. Besides, the expressions of apoptosis-related proteins Bim, PARP1 and cyclin-related protein P21 were significantly increased, and the phosphorylated ERK protein was decreased. CONCLUSION Midostaurin derivative 5'''-methoxyfradcarbazole A could increase the apoptosis of CB3 cells by promoting the expression of apoptotic protein Bim, and cause G2 phase arrest by increasing the expression of cyclin protein P21. Also, the changes of the expression levels of PARP1 and phosphorylated ERK protein also partly explain the inhibition of 5'''-methoxyfradcarbazole A on CB3 cells growth.

关键词

凋亡 / 白血病 / PKC412 / 抗肿瘤 / Western blot / 米哚妥林 / 5'''-methoxyfradcarbazole A

Key words

apoptosis / leukemia / PKC412 / anti-tumor / Western blot / midostaurin / 5'''-methoxyfradcarbazole A

引用本文

导出引用
饶青, 王立平, 朱伟明, 陈娟, 宋晶睿, 李艳梅. 米哚妥林衍生物5'''-methoxyfradcarbazole A对小鼠白血病CB3细胞的作用及机制研究[J]. 中国药学杂志, 2020, 55(13): 1078-1085 https://doi.org/10.11669/cpj.2020.13.005
RAO Qing, WANG Li-ping, ZHU Wei-ming, CHEN Juan, SONG Jing-rui, LI Yan-mei. Effect and Mechanism of Midostaurin Derivatives 5'''-methoxyfradcarbazole A on Mouse Leukemia CB3 Cells[J]. Chinese Pharmaceutical Journal, 2020, 55(13): 1078-1085 https://doi.org/10.11669/cpj.2020.13.005
中图分类号: R965   

参考文献

[1] FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 [J]. Int J Cancer, 2015,136(5):359-386.
[2] WELCH J S, LEY T J, LINK D C, et al. The origin and evolution of mutations in acute myeloid leukemia [J]. Cell, 2012, 150(2):264-278.
[3] GALLOGLY M M, LAZARUS H M, COOPER B W. Midostaurin: a novel therapeutic agent for patients with FLT3-mutated acute myeloid leukemia and systemic mastocytosis [J]. Ther Adv Hematol, 2017, 8(9):245-261.
[4] FABBRO D B E, WOOD J, MESTAN J, et al. Inhibitors of protein kinases: CGP 41251, a protein kinase inhibitor with potential as an anticancer agent [J]. Pharmacol Ther, 1999, 82(2-3):293-301.
[5] COOLS J, MENTENS N, FURET P, et al. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia [J]. Cancer Res, 2004, 64(18):6385-6389.
[6] HEIDEL F, SOLEM F K, BREITENBUECHER F, et al. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain [J]. Blood, 2006, 107(1):293-300.
[7] WILLIAMS A B, NGUYEN B, LI L, et al. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors [J]. Leukemia, 2013, 27(1):48-55.
[8] CARAVATTI G M T, FREDENHAGEN A, TRINKS U, et al. Inhibitory activity and selectivity of staurosporine derivatives towards protein kinase C [J]. Bioorg Med Chem Lett, 1994, 4(3):399-404.
[9] MEYER T R U, FABBRO D, ALTERI E, et al. A derivative of staurosporine (CGP 41251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumor activity [J]. Int J Cancer, 1989, 43(5):851-856.
[10] IKEGAMI Y, YANO S, NAKAO K. Antitumor effect of CGP41251, a new selective protein kinase C inhibitor, on human non-small cell lung cancer cells [J]. Jpn J Pharmacol, 1996, 70(1):65-72.
[11] IKEGAMI Y, YANO S, NAKAO K. Effects of the new selective protein kinase C inhibitor 49-N-benzoyl staurosporine on cell cycle distribution and growth inhibition in human small cell lung cancer cells [J]. Arzneimittelforschung, 1996, 46(2):201-204.
[12] HANAHAN D, WEINBERG R A. The hallmarks of cancer [J]. Cell, 2000, 100(1):57-70.
[13] FISHER D E. Apoptosis in cancer therapy: crossing the threshold [J]. Cell, 1994, 78(4):539-542.
[14] BROWN J M, ATTARDI L D. The role of apoptosis in cancer development and treatment response [J]. Nat Rev Cancer, 2005, 5(3):231-237.
[15] KAPOOR R, RIZVI F, KAKKAR P. Naringenin prevents high glucose-induced mitochondria-mediated apoptosis involving AIF, Endo-G and caspases [J]. Apoptosis, 2013,18(1):9-27.
[16] ELMORE S. Apoptosis: a review of programmed cell death [J]. Toxicol Pathol, 2007, 35(4):495-516.
[17] CORY S, ADAMS J M. The Bcl2 family: regulators of the cellular life-or-death switch [J]. Nat Rev Cancer, 2002, 2(9):647-656.
[18] ELMORE S. Apoptosis: a review of programmed cell death [J]. Toxicol Pathol, 2007, 35(4):495-516.
[19] BOUILLET P. Proapoptotic Bcl-2 relative bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity [J]. Science, 1999, 286(5445):1735-1738.
[20] SHUKLA S, SAXENA S, SINGH B K, et al. BH3-only protein BIM: an emerging target in chemotherapy [J]. Eur J Cell Biol, 2017, 96(8):728-738.
[21] ZHAO L, LI J, SU J, et al. LS8 cell apoptosis induced by NaF through p-ERK and p-JNK-a mechanism study of dental fluorosis [J]. Acta Odontol Scand, 2016, 74(7):539-549.
[22] JAGTAP P, SZABO C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors [J]. Nat Rev Drug Discov, 2005, 4(5):421-440.
[23] BOUCHER M J, MORISSET J, VACHON P H, et al. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells [J]. J Cell Biochem, 2000, 79(3):355-369.
[24] FRIZZELL K M, GAMBLE M J, BERROCAL J G, et al. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells [J]. J Biol Chem, 2009, 284(49):33926-33938.
[25] MALUMBRES M, BARBACID M. Mammalian cyclin-dependent kinases [J]. Trends Biochem Sci, 2005, 30(11):630-641.
[26] ABBAS T, DUTTA A. p21 in cancer: intricate networks and multiple activities [J]. Nat Rev Cancer, 2009, 9(6):400-414.
[27] BATES S, RYAN K M, PHILLIPS A C, et al. Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression [J]. Oncogene, 1998, 17(13):1691-1703.
[28] MEDEMA R H, KLOMPMAKER R, SMITS V A, et al. p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases [J]. Oncogene, 1998, 16(4):431-441.
[29] DULIC′ V, STEIN G H, FAR D F, et al. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition [J]. Mol Cell Biol, 1998, 18(1):546-557.

基金

贵州省科技计划项目资助(黔科合基础[2018]1409);贵州省“百人领军人才”计划资助(黔科合院士站([2015]4009号);黔科合体(Z字[2014]4007号)
PDF(7449 KB)

Accesses

Citation

Detail

段落导航
相关文章

/